The miR-17-92 cluster expands multipotent hematopoietic progenitors whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in mice.

نویسندگان

  • Yanmei Li
  • Laura M Vecchiarelli-Federico
  • You-Jun Li
  • Sean E Egan
  • David Spaner
  • Margaret R Hough
  • Yaacov Ben-David
چکیده

The miR-17-92 cluster and its 6 encoded miRNAs are frequently amplified and aberrantly expressed in various malignancies. This study demonstrates that retroviral-mediated miR-17-92 overexpression promotes expansion of multipotent hematopoietic progenitors in mice. Cell lines derived from these miR-17-92-overexpressing mice are capable of myeloid and lymphoid lineage differentiation, and recapitulate the normal lymphoid phenotype when transplanted to nonobese diabetic/severe combined immunodeficiency mice. However, overexpression of individual miRNAs from this locus, miR-19a or miR-92a, results in B-cell hyperplasia and erythroleukemia, respectively. Coexpression of another member of this cluster miR-17, with miR-92a, abrogates miR-92a-induced erythroleukemogenesis. Accordingly, we identified several novel miR-92a and miR-17 target genes regulating erythroid survival and proliferation, including p53. Expression of this critical target results in marked growth inhibition of miR-92a erythroleukemic cells. In both murine and human leukemias, p53 inactivation contributed to the selective overexpression of oncogenic miR-92a and miR-19a, and down-regulation of tumor-suppressive miR-17. This miR-17-92 expression signature was also detected in p53- B-cell chronic lymphocytic leukemia patients displaying an aggressive clinical phenotype. These results revealed that imbalanced miR-17-92 expression, also mediated by p53, directly transforms the hematopoietic compartment. Thus examination of such miRNA expression signatures should aid in the diagnosis and treatment of cancers displaying miR-17-92 gene amplification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-17-92 Cluster Regulates Adult Hippocampal Neurogenesis, Anxiety, and Depression.

Emerging evidence has shown that noncoding RNAs, particularly microRNAs (miRNAs), contribute to the pathogenesis of mood and anxiety disorders, although the molecular mechanisms are poorly understood. Here, we show that altered levels of miR-17-92 in adult hippocampal neural progenitors have a significant impact on neurogenesis and anxiety- and depression-related behaviors in mice. miR-17-92 de...

متن کامل

Epigenetic silencing of the oncogenic miR-17-92 cluster during PU.1-directed macrophage differentiation

The oncogenic cluster miR-17-92 encodes seven related microRNAs that regulate cell proliferation, apoptosis and development. Expression of miR-17-92 cluster is decreased upon cell differentiation. Here, we report a novel mechanism of the regulation of miR-17-92 cluster. Using transgenic PU.1(-/-) myeloid progenitors we show that upon macrophage differentiation, the transcription factor PU.1 ind...

متن کامل

The MYC/miR-17-92 axis in lymphoproliferative disorders: A common pathway with therapeutic potential

MicroRNAs (miRNAs) represent a class of small non-coding single-stranded RNA molecules acting as master regulators of gene expression post transcriptionally by inhibiting the translation or inducing the degradation of target messenger RNAs (mRNAs). In particular, the miR-17-92 cluster is widely expressed in many different cell types and is essential for many developmental and pathogenic process...

متن کامل

MicroRNAs of the mir-17~92 cluster regulate multiple aspects of pancreatic tumor development and progression

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy characterized by resistance to currently employed chemotherapeutic approaches. Members of the mir-17~92 cluster of microRNAs (miRNAs) are upregulated in PDAC, but the precise roles of these miRNAs in PDAC are unknown. Using genetically engineered mouse models, we show that loss of mir-17~92 reduces ERK pathway activation downstream ...

متن کامل

MicroRNA-17–92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats

Multipotent mesenchymal stromal cells (MSCs) are selfrenewing, multipotent progenitor cells, which robustly release exosomes. MSCs improve neurological outcome after stroke and may exert their therapeutic effects through exosomes. MSC-harvested exosomes are involved in cellto-cell communication and are hypothesized as the paracrine effectors of MSCs by encapsulating and transferring a large num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 119 19  شماره 

صفحات  -

تاریخ انتشار 2012